Math 347: Practice Exam 2

- 1. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers.
 - a) State the definition of a_n the limit of a_n being L.

b) Suppose that $a_n = \frac{1}{n}$. What is $\lim a_n$? Prove your answer using the definition above.

c) Suppose that $b_n = \frac{1}{n} \sum_{i=1}^n a_i$. Prove that b_n converges (Hint: The inequality from the previous midterm $\sum_{i=1}^n c_i | \leq \sum_{i=1}^n |c_i|$ might be useful).

- 2. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers.
 - (a) State the definition of $(a_n)_{n\geq 1}$ being a Cauchy sequence.

(b) Provide an example of $(a_n)_{n\geq 1}$ that is a Cauchy sequence.

(c) Suppose that $(a_n)_{n\geq 1}$ is a Cauchy sequence, prove that $(a_n)_{n\geq 1}$ is bounded.

- 3. Consider sets S, T and R.
 - (a) State the definition of "S and T have the same cardinality".

(b) Suppose S and T have the same cardinality, and T and R have the same cardinality. Prove that S and R have the same cardinality (State precisely which property of composition of functions you are using. You don't have to prove this property though.).

(c) State the definition of |S| = n. Suppose that |T| = m. Let R be the set of functions between S and T. Prove that $|R| = |T|^{|S|}$.

- 4. Suppose that $x_1 = 1$ and $2x_{n+1} = x_n + \frac{3}{x_n}$.
 - (a) Prove that the limit of x_n exists.

(b) Find the limit $\lim_{n\to\infty} x_n$.